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Program Element II.5:  Identify active faults, define their geometry, and determine the 
characteristics and dates of past earthquakes 
 
Investigations Undertaken The Wasatch fault "megatrench" was excavated in Sept. 1999 
across an 18 m-high double-scarp of the Salt Lake City segment of the Wasatch fault zone 

(WFZ), 1 km north of the mouth of Little Cottonwood Creek (Fig. 1).  
 
The trench and accompanying auger hole exposed 26 m of vertical section, roughly 4 times that 
of the typical trench on the WFZ (Fig. 2). Each of the two fault scarps transected were underlain 
by normal faults with 7-9.5 m of vertical displacement measured on the top of Bonneville-age  
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Fig.2 4. Photograph of the WFZ megatrench looking east from the toe of the trench. Note person 
for scale near head of trench on right-hand bench. The Quaternary deposits exposed in the trench 
define five distinct color bands (from dark brown at the head, to white, light brown, white, to 
brown at the toe). The uppermost dark brown deposit is distal Holocene alluvial fan and local 
slopewash. The next white band (downslope) is thin Lake Bonneville lacustrine sediments, which 
are in fault contact with Holocene alluvium (next light brown band). The next thick white band is 
the same Bonneville lacustrine sediments, downfaulted 8 m down-toward-the-viewer by the 
upper (eastern) fault strand. The final brown band is more Holocene alluvium and colluvium, 
which is in fault contact with the lake beds along the lower (western) fault strand. That fault has 
9.5 m of throw measured on the top of the lake beds. The inner slot at lower center was not deep 
enough to expose lake beds on the downthrown side of the lower fault strand, but an auger hole 
encountered the top of lake beds 2.2 m below the trench floor. 
 
 
lake beds (ca. 15,500 years old). Each fault was fronted by 3-4 colluvial wedges, indicating 3-4 
post-Bonneville faulting events on each fault (Fig. 3). The one surprise in the trench was the 
existence of a thick buried soil developed atop the lake beds and underlain by scarp-derived 
colluvium. This soil argues for a long period of fault inactivity between ca. 9,000 years ago and 
15,500 years ago. That time span is roughly 4 times as long as the typical intervals between 
major earthquakes on this segment of the WFZ. The quiescent interval could be either an 
irregularity typical of the long-term behavior of the WFZ, or a response to the drying up of Lake  



GEO-HAZ Consulting, Inc. 
__________________________________________________________________ 

__________________________________________________________________________________________________________________ 
D:\GEOHAZ\USGS\NEHRP99\WFZ.99\MEGA_FTR.DOC    10/17/2000 3 

0 2

2

4

4

6

6

8

8

10

10

12

12

14

14

16

16

18

18

20

20

22

22

24

24 ?

26 28

Soil Profile 3
(15 horizons)

Soil Profile 4
(11 horizons)

Soil Profile 2
(3 horizons)

Soil Profile 1
(7 horizons)

30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68

4

4

4

caved-in area

4

5a63B3

5a63B3
5a63

E11B1

E10B2

7bA

7Ab

E11

8.3 m

10 m

E10bE10b
E10a

E10cA

E10cAB

E10cBt
E10cA

E10cA

8bAE9bAb1

E9bAb1

E9bAb1

9bA
9a

E9bABb1

E9bABb1

E9bABb1 E9bABb1

E9bABb1
E9bA

E9bBt1b1

E9bBt1b1 E9bBt1b1

E8Bt2b2
8

8

7bB2

7bB2

3c

3c

3a

3a

2b

2a

4a

4a

5a
5b

4b
5c

5c

7a
7

7b15b

3b

3d

5a63

5a63

5a63

3c

3c
3b

3b

3d

5cCb5

5cACb5

5cAb5

6 7c 7a 7a

7a

7c

7a 7a 7b

7bCoxb1

7b 7bBtb1
E9bCoxb1

7a

7b
7b

7a 7a

7b
7b

7b

5b

5b
5b5bk5cC2b5

5cC1b5

5cC1b5
5cC1b5 5cACb5

5cAb5

5cAb5
5cAb5

6Bkb4
6Btb4

6Bt
6Btb4

5cAkb5
5a

5a7 5a63
5a62
5a61

5a5 5a4 5a1
5a3

5a3 5b

5cA

5cA
5cA

5cA

5b15a6
5a7

5a5
5b/c
5b1/5a

3b1 3b
3d

3d

5a2

5a2
5a1

7b1

7b
7a

7aBtb1

4

4 5b1/5a75a2
5a

4
5b

2b
2b

2a

W11

W12ACW10Ab1

W10Ab1W10ABb1
W9ABb2

W9Ab2
W9Btb2

W8bBtb3

W8bBtb3W8b

W9

W9

W8c7b

7d
7e

7b
7c

7c
7c7c1

7c

7b

W9Btb2
W10ABkb1W10ABb1

W12A

W12A

W11A

2a

5cCk

5cA5cBk

5c

2b

5b1/5a7

14

16

18

20

22

24

26

Wasatch fault “Megatrench”
Salt Lake City segment,1 km north of Little 
Cottonwood Canyon, at the Despain 
Christmas tree farm

E W

5a1

E11

E10b

E10a

E10cA

E10cBt

E9bAb1

E9b

Debris-facies colluvial wedge of 
event Ze

Debris-facies colluvial wedge of  
event Ye, upper matrix-supported 

Colluvial wedge of  event Ye, lower 
stratified part

A HORIZON developed on wash 
facies colluvium of unit 10

AC HORIZON developed on wash 
facies colluvium of unit 10

Bt HORIZON developed on wash 
facies colluvium of unit 10

A HORIZON developed on unit 9b, 
wash facies colluvium of event Xe

AB HORIZON developed on unit 9b,  
colluvium/crack fill of event Xe

Bt1 HORIZON developed on unit 9b, 
colluvium/crack fill of event Xe

Unit 9b, colluvium/crack fill of event 
Xe

E8Ab2

E8ACb2

E8Btb2

E8b

E8a

7b1

(A horizon?)Organic crack fill of event 
We

(AC horizon?)Organic crack fill of 
event We

Bt HORIZON developed on wash 
facies colluvium of event We

Unit 8, sandy wash facies colluvium 
of event Xe

Unit 8, gravelly wash facies colluvium 
of event Xe

Unit 7b1, sandy gravel, Holocene 
graben-fill alluvium

7b

7a1
Unit 7a1,debris-facies colluvial 
wedge of event Ve

Unit 7b1, sandy gravel, Holocene 
graben-fill alluvium

Units in eastern 50 m of 
trench

Additional units in western 
15 m of trench

E7cA

E7cAB

E7cBt1

A HORIZON developed on unit 7b, 
Holocene gravelly alluvium

AB HORIZON developed on unit 7b, 
Holocene gravelly alluvium

Bt HORIZON developed on unit 7b, 
Holocene gravelly alluvium

GEO -HAZ Consulting, Inc.

DATE
M ay 23, 2000

F:\GEOHAZ\USGS\NEHRP-99\W FZ99\LOG.CDRDWG. NO.

FIGURE  

LITTLE COTTONWO OD C ANYO N
“MEGATRENCH”, S. WALL

F4

F4

F3
F2

C-14 sample
and calibrated
age in years BP
(2 sigma range)

rock

Fault (dashed
where obscure)

shear
zone
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Bonneville between 15,000 years ago and ca. 11,000 years ago, which relieved a huge weight on 
the downthrown fault block of the WFZ. If it was an unloading effect, it died out by the time of 
Event W, and that it has not affected the regular 1300-1400 year recurrence cycle since that time 
Fig. 4). Therefore, we do not propose to favor or disfavor any of McCalpin and Nishenko’s 
recurrence models based on the long recurrence times observed while the lake was drying up. 
 However, we can apply the results of some more recent recurrence studies to the 
likelihood of the various recurrence models. For example, the highest 100-year  conditional 
probability calculated by McCalpin and Nishenko (1996) was 57%, based on a Weibull model of 
recurrence with a mean of 1328 years and a COV of only 0.04. By comparison, conditional 
probabilities based on lognormal models with COVs of 0.21 and 0.5 indicated probabilities of 
22% and 11%, respectively (Table 5). So, is the COV of long-term recurrence on the SLC 
segment closer to 0.04, 0.21, or 0.5? 

McCalpin and Slemmons (1998) inventoried all published paleoseismic chronologies that 
contained 3 or more well-dated events. They found that, as a group, worldwide normal faults 
with a large span of slip rates and mean recurrences tended to have an average COV of 
recurrence of 0.35. The same data set for all fault types yielded an average COV of recurrence of 
0.36. In addition, the more paleoearthquakes that had been dated at a local trench site, the closer 
the COV of that local recurrence series approached 0.36. McCalpin and Slemmons argued that a 
relatively short recurrence series at a site (say, containing only 3-4 events, or 2-3 recurrence 
intervals) could yield a wide possible range of recurrence COVs, ranging from ca. 0.04 to 0.8. 
However, the site chronologies with successively more events tended to have COVs that 
converged on the value 0.36. They further argued that, for the purposes of making conditional 
probability estimates, it would be preferable to use the value COV=0.36 rather than use an 
“apparent” COV value from a short (3-4 event) recurrence series. 
 Their conclusions suggest that we should probably not lend much weight to the 
probability estimate of 57% in Table 5, which is based on a COV=0.04 from only 4 events on the 
SLC segment. Instead, we should probably assume a long-term recurrence COV of 0.36 for the 
SLC segment. Note that 0.36 falls almost exactly halfway between the COVs of 0.21 and 0.5, 
which resulted in probability estimates of 22% and 11%, respectively, for the next 100 years. If 
we assume that conditional probability varies linearly with COV over this relatively small range, 
then an assumed recurrence COV=0.36 would imply a conditional probability of 16%  for M>7 
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earthquakes in the next 100 years.  
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Fig. 4. Space-time diagram of paleoearthquakes dated in previous studies, and in the megatrench.
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